Deep Learning: Essential Notes

November 12, 2025

Deep Learning: Essential Notes

Slide 1: Nodes, Edges, and Sum/Activation

b Weighted sum:

3
w, Z_ZW,X,—i—b—w X+ b

i—1
wo
@ > > z >@—’A¥tivation:

y =1(z) (eg., ReLU, o, tanh)

L o Key pieces:
Activation: sum of the connected edges satisfies a

threshold (know as activation fucntion), this
activates the neuron at the next layer @ Edges: weights w;
Minimise cost v-alue: o Bias: b
Back-prograpation

@ Nodes: inputs/neurons

@ Activation: nonlinearity f(-)

Deep Learning: Essential Notes November 12, 2025 2/26

Slide 2: The Three General Layers

Input layer: raw features x

Hidden layer

Input layer
Hidden layers: learn internal representations
via nonlinear units

Output layer: task-specific mapping (class
scores, regression)

Forward pass:

h=f(Wix+b1), y=g(Wzh+by)

Deep Learning: Essential Notes November 12, 2025 3/26

Slide 3: Perceptron Visual and Prediction Steps

b Prediction steps:

€<D\%A @ Compute z=w'x+ b.
e o

@ Return class label (e.g. 1 = positive, 0 =
negative).

step 1: imputs are fed to into processor Decision boundary:

step 2: peceptron aplies weiht to estiamte wix+b=0
output

step 3: perceptron computes error

step 4: perceptron adjusts error by back

propagation

step 5: repeat 1-4 until desired model accuracy

@ Take inputs x.

Deep Learning: Essential Notes November 12, 2025 4/26

Slide 4: MLP Example Political Influence (Visual Only)

Hashtag freq. (politics)

Sentiment score .

7
/

Y
g
i

7
d “
\!

<3

&
&
K
RAVAI
2

/

1\Q‘

- ' 5
Retweet rate .‘ LN

RS O
/'A “‘\‘")" Democr
Follower/Following " X x‘\\\ Y , \\

Y N

3(
Network centrality ‘

w

o// :

Deep Learning: Essential Notes

Slide 5: MLP Classification vs Regression (At a Glance)

Aspect

Classification MLP

Regression MLP

Target & Output

Loss
Common Metrics
Features

Typical
(examples)

Output Interpreta-
tion
Last-layer Activa-

tion

Discrete classes; output layer
= sigmoid (binary) or soft-
max (multi-class)

Binary/multi-class cross-
entropy
Accuracy, F1, Preci-

sion/Recall, AUC
Counts/frequencies,

TFIDF /topic probs, network
stats, categorical dummies,
normalized numeric signals
Class
dence)

probabilities (confi-

Sigmoid / Softmax

Continuous value(s); output
layer = linear (identity)

MSE / MAE / Huber
RMSE, MAE, R?

Scaled numerics, engineered
ratios, moving averages,
lagged values, interaction
terms, splines/bins

Point estimate (with optional
intervals)

Identity

Deep Learning: Essential Notes

November 12, 2025

6/26

Slide 7: Activation Functions Shapes & When to Use

1 ReLU max(0, z)

Sigmoid o(z) = ——
g (2 P

Map to (0, 1) for probabilities (binary outputs). Can heurons.

saturate/vanlsh. Leaky ReLU max(az,z) (e.g. o =0.01)

Purpose:
Purpose: Default for hidden layers; sparse/fast; beware dead

Purpose:
P tarh(z) — . Fix ReLU dead units with small negative slope.
urpose: Zero-centered activations; useful in shallow
nets; still saturates. ok
Softmax softmaxy(z) = =
Identity f(z) = z >l
Purpose: Purpose

Linear output for regression (last layer).

Deep Learning: Essential Notes

November 12, 2025

Turn logits into class probabilities (multi-class outputs).

7/26

Slide 6: MLP Model Components

Data pipeline
@ Preprocess: cleaning, normalization/standardization
@ Train/validation/test split; batching and shuffling
Architecture
@ Layer sizes, depth, activation functions
@ Regularization: dropout, weight decay, batch norm
Optimization
@ Loss (BCE/MSE), optimizer (SGD/Adam), learning rate schedule
@ Early stopping, checkpoints
Evaluation

@ Metrics (task-specific), error analysis, robustness checks

Deep Learning: Essential Notes November 12, 2025

8/26

Slide 7: Typical Activation Functions (with sketches)

Sigmoid o(z) = Py ReLU max(0, z)

Softmax (multi-class output)

Identity f(z) = z (regression)

softmax(z) =

Ej e%

Deep Learning: Essential Notes November 12, 2025 9/26

Slide 8: Effect of Bias in a Neuron

Purpose: The bias allows a neuron to shift its activation threshold, enabling more flexible decision
boundaries.

Without Bias: y = f(wx) With Bias: y = f(wx + b), here b=+1.5
ReLU: f(wx) ReLU: f(wx + b)
y y
X | X
Activates : Activation
at x =0 decision boundary fixed at origin. threshold shifts left; decision boundary moves.

Key Takeaway

@ Without bias: all activations/lines pass through origin limited flexibility.

@ With bias: neurons can learn thresholds and offsets more expressive model.

Deep Learning: Essential Notes November 12, 2025 10 /26

Agenda

Q@ Typical CNN workflow (data features classifier)

@ What is a convolution? Padding, stride, and why odd kernels
© Max pooling: purpose and effect

@ Build a tiny CNN for MNIST

© Your code: line-by-line concepts

@ Parameter counts, shapes, and sanity checks

@ (Optional) Feature maps visualization tips

Deep Learning: Essential Notes November 12, 2025 11/26

Typical CNN Workflow

@ Data prep: load images, normalize to [0, 1], set
shape (H, W, channels).

@ Convolutions: learn local patterns (edges, strokes)
with shared kernels.

@ Grayscale digits: 28 x 28 x 1
@ 10 classes (0-9)

o Simple dataset: two conv blocks

Pooling: downsample, keep strongest activations, X
° 8 P P & often suffice

add translational tolerance.

O Flatten/Global pooling: convert feature maps to
vectors.

© Dense + Softmax: map features to class
probabilities.

@ Train/Evaluate: choose loss/metrics, iterate for
few epochs.

Deep Learning: Essential Notes November 12, 2025 12 /26

What is a Convolution?

o A kernel (e.g., 3 x 3) slides over the image. Each output pixel is a weighted sum of a
local neighborhood.

e For one channel: ((1 *K)(i.j) = > > K(u,v); (i + u,j+ v)), wherer= %5 for odd

u=—rv=—r
k.

@ With C input channels, each filter has k x k x C weights +1 bias; outputs one feature
map. Using F filters yields F maps.

Why odd kernels (3,5,7...)7

They have a well-defined center. Padding and alignment stay symmetric; gradients are
stable.

Deep Learning: Essential Notes November 12, 2025 13 /26

Padding and Stride

o Padding controls output size:
e valid: no padding; H — H — k + 1 (shrinks)
o same: zero-pad to keep H and W unchanged

e Stride s skips positions (e.g., s = 2 halves spatial size).

@ Rule of thumb: start with k = (3, 3), stride = 1, padding=same or pooling for
downsampling.

Deep Learning: Essential Notes November 12, 2025 14 /26

Max Pooling

e MaxPooling2D(2 x 2): takes the max in each 2 x 2 window; reduces size by ~ 2 in H
and W.
@ Benefits: translation tolerance, fewer parameters, less overfitting, faster compute.

@ Analogy (materials): like coarse-grainingkeeping the most prominent response in each
small patch.

Deep Learning: Essential Notes November 12, 2025 15 /26

CNN Layer Pipeline (Simple Explanation)

Conv — BatchNorm — Pool — Conv — Pool — Flatten —
Densel28 — Dropout — Densel0

Convolution (Conv): Learns patterns (edges, textures).
BatchNorm: Normalizes activations for stable, faster training.
MaxPooling: Downsamples spatial size (position invariance).
Second Conv + Pool: Deeper, more abstract features.
Flatten: Converts 2D maps to a 1D vector.

Dense(128): Combines features into meaning.

Dropout(0.3): Reduces overfitting.

Dense(10): Softmax classifier (10 classes).

Deep Learning: Essential Notes November 12, 2025 16 / 26

RNN Network: How It Differs from a CNN

RNN (Recurrent Neural Network)
@ Processes data step-by-step over time.
Has hidden state that carries memory.

Good for time-series, sequences, signals.

Output depends on current input + past inputs.

X1 x2

X3

CNN (Convolutional Neural Network)

@ Processes data spatially (images).
@ Learns patterns via filters.
@ Good for images, microstructures, 2D/3D fields.
@ Output depends on spatial features.
Input Image
Conv + BN + Pool
Flatten
Dense
Essential Notes November 12, 2025

17/26

Comparison: SimpleRNN vs LSTM vs GRU

SimpleRNN

@ Oldest RNN unit; single state h;.

@ Struggles on long sequences
(vanishing gradients).

@ Fast and simple.

LSTM GRU
@ Two states: hidden h; and cell @ One state: h: only.
Ct.

@ Two gates: reset, update.

@ Three gates: input, forget, @ Faster than LSTM, similar

output.

performance.
@ Best for long-term dependencies;
heavier.
Update Reset

Forget Input Output
Model States Gates Best For
SimpleRNN h 0 short patterns
GRU h: 2 medium sequences
LSTM he, ¢t 3 long-term patterns

Deep Learning: Essential Notes November 12, 2025

18/26

ConvLSTM vs LSTM vs CNN (High-Level Comparison)

Model Input Type What It Learns Use Case
CNN Images (H, W, C) Spatial features Microstructures, images
LSTM Sequences (T, F) Temporal patterns Time-series, signals
ConvLSTM Image sequences (T, H, W, C) Spatio-temporal features Videos, microstructure evolution
CNN LSTM ConvLSTM

@ Processes whole image at once. @ Reads one time step at a time. @ CNN + LSTM ideas combined.

@ Learns patterns in space. @ Memory via hidden state h;. @ Learns both space & time.

@ Uses Conv filters 4 Pooling. @ No spatial structure. @ Best for evolving microstructures/videos.

Deep Learni Essential Notes November 12, 2025 19/26

LSTM Memory: Hidden State vs Cell State

@ Hidden State (h:): short-term memory; used for output.
@ Cell State (c;): long-term memory; carried across timesteps.

@ Together:
(ht, ct) = LSTM(xt, ht—1, ce—1)

ht_1
\
Xt ————> LSTM Cell ——— h;
c / \
t—1 Ct

Deep Learning: Essential Notes November 12, 2025 20/26

RNN Input Shapes: 2D vs 3D

MLP / Dense Layers: 2D Input

@ N = number of samples
@ F = number of features
@ No time dimension

RNN / LSTM / GRU: 3D Input

@ T = time steps
@ F = features per timestep
@ Needed for sequence modeling

(N, F)

(N, T,F)

Dense Input (N, F)

RNN Input (N, T, F)

Deep Learning: Essential Notes

November 12, 2025

21/26

Inside an LSTM Cell: Input, Forget, Output Gates

@ Forget Gate f;: remove old info.
he g Forget
fr = o(We[xt, he—1] + br)
@ Input Gate i;: write new info.
it = o(Wi[xt, ht—1] + b;) xt — 5 Input
@ Output Gate o;: expose memory as output.
or = o(Wo[xe, he—1] + bo)
Output

@ Cell Update

ce=f-c_1+i-Ct

Deep Learning: Essential Notes

ht

November 12, 2025

22 /26

Generative Adversarial Networks (GANs)

Real Sample
Training Data Backpropagation
| Diseriminator, b !
. Fake Sample % Multilayer Neural

............ § Network

1)]
] ' 1 TS
1 I Generator,G
'
= Multilayer Neural—]
| ! Network | Backpropagation
]] '

Backpropagation

S
| Random Noise |

'
'
'
'
—
'
'
'
'

@ The Generator (G) creates new data (e.g., images) from random noise.
@ The Discriminator (D) evaluates the data, distinguishing between real samples from the training set and fake
samples produced by the generator.
@ Both networks are trained in an adversarial setup:
e The generator tries to produce data that can fool the discriminator.
e The discriminator tries to correctly classify real and fake data.

@ Training continues until the generator produces data that is indistinguishable from real training samples.

Deep Learni Essential Notes November 12, 2025 23/26

Key Components of a GAN

o Generator

o Takes a random noise vector (z)
o Learns to produce synthetic samples (fake images)
e Objective: fool the discriminator

@ Discriminator

o Takes real or generated samples
o Outputs probability of being real
o Objective: correctly classify real vs fake

@ Adversarial Framework

o Generator and Discriminator compete
e Training improves both progressively

Deep Learning: Essential Notes November 12, 2025 24 /26

Generator and Discriminator Architecture

Generator Network
@ Input: Noise vector (z), e.g., 100 dimensions
e Hidden Layers: Dense + LeakyReLU activations + Batch Normalization (stabilize training
and improve convergence)
@ Output Layer: 784 units (flattened 28x28 image)
@ Activation: tanh (outputs in [—1,1]), suitable for image data

Discriminator Network
@ Input: Flattened image (784 dimensions)
@ Hidden Layers: Dense + LeakyRelU
@ Output Layer: 1 unit (real/fake)
@ Activation: sigmoid probabiity of likelihood of input image being real

Deep Learning: Essential Notes November 12, 2025 25/26

GAN Training Algorithm

@ Generate fake images using the generator by passing random noise as input.
Sample real images by selecting a random batch from the training dataset.

Concatenate real and fake images to form a combined batch for the discriminator.

© 00

Create discriminator labels: (Optional)
o Real images — 0.9 (one-sided label smoothing)
o Fake images — 0
Train the discriminator on the combined batch of real and fake images.
Generate a new batch of random noise for the generator.
Create generator labels: 1 (real), so the generator attempts to fool the discriminator.

Train the combined GAN model (generator + frozen discriminator) using the updated noise and the generator
labels.

Monitor training by printing discriminator and GAN losses.

60 0000

Repeat for the specified number of iterations. The generator improves at producing realistic images, while the
discriminator gets better at distinguishing real from fake.

@ Final Goal: The generator should create images that are indistinguishable from real data.

latent_dim (100) — Generator — data_dim (784)
data_dim (784) — Discriminator — real/fake score

Deep Learning: Essential Notes November 12, 2025 26 /26

